The Design and Implementation of a Meaning Driven Data Query Language
نویسندگان
چکیده
We present the design and implementation of a Meaning Driven Data Query Language MDDQL which aims at the construction of queries through system made suggestions of natural language based query terms for both scientific application domain terms and operator/operation ones. A query construction blackboard is used where query language terms are suggested to the user in its preferred natural language and in a name centered way, together with their connotation. This helps in understanding the meaning of the terms and/or operators or operations to be included in the query. Furthermore, the construction of the query turns out to be an incremental refinement of the query under construction through semantic constraints, where only those domain language terms and/or operators/operations are suggested which result into meaningful combinations of query terms as related to the scientific application domain semantics. Therefore, semantically meaningless queries can be prevented during the query construction. Such a semantics aware mechanism is not available in conventional database query languages such as SQL, where one is allowed to execute a query calculating, for example, the average of numerical data values whereas they represent the codes of categorical values. Moreover, no familiarity with the semantics of complex database schemes or interpretation of the symbols (names of classes/tables/attributes, value codes) underlying the storage model, as well as familiarity with the syntax of a database specific query language are needed by the end-user. The constructed query can be submitted to the MDDQL query interpretation and transformation engine, where the corresponding SQL-query is generated and delegated to a DBMS (e.g., Oracle, MSAccess, SQL-Server). Generation of SQL-statements addressing NF2 data models such as those provided by the object-relational Oracle DBMS is also enabled. The query result is presented in a table based form where all storage model symbols are interpreted and can be exported for the usage with statistical software packages (e.g., SPSS).
منابع مشابه
انتخاب مناسبترین زبان پرسوجو برای استفاده از فراپیوندها جهت استخراج دادهها در حالت دیتالوگ در سامانه پایگاه داده استنتاجی DES
Deductive Database systems are designed based on a logical data model. Data (as opposed to Relational Databases Management System (RDBMS) in which data stored in tables) are saved as facts in a Deductive Database system. Datalog Educational System (DES) is a Deductive Database system that Datalog mode is the default mode in this system. It can extract data to use outer joins with three query la...
متن کاملConcordance-Based Data-Driven Learning Activities and Learning English Phrasal Verbs in EFL Classrooms
In spite of the highly beneficial applications of corpus linguistics in language pedagogy, it has not found its way into mainstream EFL. The major reasons seem to be the teachers’ lack of training and the unavailability of resources, especially computers in language classes. Phrasal verbs have been shown to be a problematic area of learning English as a foreign language due to their semantic op...
متن کاملPeer-Assessment and Student-Driven Negotiation of Meaning: Two Ingredients for Creating Social Presence in Online EFL Social Contexts
With the current availability of state-of-the-art technology, particularly the Internet, people have expanded their channels of communication. This has similarly led to many people utilizing technology to learn second/foreign languages. Nevertheless, many current computer-assisted language learning (CALL) programs still appear to be lacking in interactivity and what is termed social presence, w...
متن کاملDesign and Implementation of a Software System for Detecting Orthographical or Morphological Errors in Persian Words
This paper presents a new method for analyzing words in the Persian language context to find orthographical and structural errors regardless of the meaning. This technique tokenizes each word in a statement then tries to detect the kind of word, and analyses its correctness in terms of orthography and morphology by means of a lexicon. It should be noted that some words in the Persian language h...
متن کاملDeveloping a BIM-based Spatial Ontology for Semantic Querying of 3D Property Information
With the growing dominance of complex and multi-level urban structures, current cadastral systems, which are often developed based on 2D representations, are not capable of providing unambiguous spatial information about urban properties. Therefore, the concept of 3D cadastre is proposed to support 3D digital representation of land and properties and facilitate the communication of legal owners...
متن کامل